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The procedure of obtaining the concentration independent partial interference functions 
Iij(k) which was applied in many articles for the analysis of diffraction experiments on 
liquid metall alloys is reproduced for the model system of hard spheres. As in the real 
alloys the functions &j(k) allow one to reconstruct the total interference functions of the 
system in the wide range of compositions. However, &.(k) differ in an essential way from 
the true partial functions Iij(k) of the model system. Thus, although for every real binary 
alloy it is possible to find (in a variety of ways) the concentration independent functions 
Iij(k), they have no clear physical interpretation and, in any case, do not represent the true 
partial interference functions of the system. 

1 INTRODUCTION 

The extraction of structural information from diffraction patterns of binary 
solutions is difficult enough even in the case of simple atomic liquids. The 
reason is that the coherent scattering of the radiation (X-rays, neutrons, 
etc.) is characterized in such systems by three structure-sensitive functions - 
partial structure factors S1, ,  S22, S12, in contrast with one - component 
systems where a single structure factor is needed. With the help of these 
functions the intensity of the scattered radiation at an angle 28 is expressed 
as12 

= xlf:(k)Sll(k) + X 2 f m 2 2 ( k )  + 2(x,x,)”2f,~)f2(k)S,20C). (1) 

The partial structure factors are related to the partial radial distribution 
functions by 

(2) Sij(k) = sij + $(pip,)l/y[g,j(r) - 1) Sin kr dr. 
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138 V. I .  KORSUNSKY AND W. I. NABERUKHIN 

Here pi is the average number density of ith species (i = I ,  2), k = 4nsin 
Old, d - the wavelength of radiation, fi(k) -the atomic coherent scattering 
amplitudes, xi = pi/(pI + pz), ai, - the Kronecker symbol. One often 
introduces in practice the so-called total interference function defined as 
(see, for example, Wagner and Halder3) 

This function is, by analogy with ( l ) ,  the linear combination of the partial 
interference functions Iij(k): 

I&) = Wl,Ildk) + W2212M + 2W,21,2(k)9 (4) 
where 

and 

4n 
k Iij(k) = 1 + - (p l  + [gij(r) - l]r sin kr dr. (7) 

It is easy to see from (2) and (7) that the partial functions Iij and Sij are con- 
nected by the relations 

(8) 

(9) 

1 
Xi 

I,(k) = 1 + -[S,(k) - l](i = 1,2) 

I&) = 1 + ( ~ I ~ 2 ) - ” 2 S 1 2 ( k ) .  

From these formulae it follows that in order to determine three partial 
functions one needs, in principle, three independent diffraction patterns 
for each solution. Om of them may be obtained, for example, from the 
scattering of X-rays, and two others, as was suggested by Keating,4 from 
neutron diffraction experiments with different isotopes. This method is, in 
principle, quite rigorous, but requires much labour. There have been only 
two attempts to realize it for liquid alloys; Cu6Snss and Cu-Te6. Here three 
neutron diffraction experiments was used with isotope enrichment of Cu. 
Already these studies reveal considerable difficulties of this procedure. 
Because of small differences between the scattering amplitudes fi of the 
isotopes, particularly, between 63Cu, 65Cu and natural Cu which were 
used, the calculated Ii,(k) showed large  fluctuation^.^^^ Besides, for many 
systems it is difficult or impossible to find suitable isotopes for realizing the 
Keating procedure. 

All these difficulties stimulated search for less rigorous but simpler and 
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MEANING OF THE CONCENTRATION 139 

more accessible methods for the determination of partial functions. With 
that end in view Halder and Wagner7 proposed a method which is based on 
the assumption that the partial interference functions Iij (k) are independent 
of concentration over a wide range of alloy compositions. This method does 
not require several kinds of radiation and the isotopic substitution experi- 
ments. It is enough, in principle, to measure the scattering intensity from 
three alloys of different concentrations and then to solve the set of three 
Equations (4) to determine the three functions Iij(k). The concentration 
independent partial interference functions obtained in such a manner will 
be denoted by Iij, to distinguish them from the true partial functions Iij. It 
is possible now to calculate the total interference functions of alloy at other 
concentrations on the basis of Iij(k). Good agreeinent between such a 
reconstruction and the experimental curves is considered as the justification 
of the initial assumption about the concentration independence of fij (k). 

The method described above was used by several authors to evaluate the 
partial functions for various alloys: Ag-sr~,~ C u S n , 9  Cu-Mg,'O 
Cu-Ag," Mg-Ag,12 Mg-Sn,I3 Cu-Sb,14 Na, K, and AI-Mg,15,16 Hg-In and 
Hg-T1.l7 In all cases the concentration independent partial functions iij 
thereby obtained allowed the reconstruction of the total interference 
functions of the alloys over practically the whole range of compositions. So 
impressive a success of the quite arbitrary, on the face of it, procedure is 
a nontrivial fact. It may seem that, indeed, an effective method for the 
determination of the partial functions Ii, has been discovered. However, the 
only criterion that these functions are correct is essentially the good results 
of the reconstruction of the experimentally measured I(k). This criterion, 
as was mentioned by the authors of the original p r ~ p o s a l , ~  is a necessary 
but not sufficient condition for the correctness of the initial assumption. 
But subsequent articles both by these and other authors demonstrated only 
the existence of the concentration independent partial functions fij, but 
did not answer the question whether the fij's thereby obtained actually re- 
present the true partial interference functions Iij of the alloys. 

In order to answer this question we reproduce in the present work the 
procedure of obtaining the concentration independent partial interference 
functions for a model system: a binary mixture of hard spheres of different 
diameters. The use of the model system allows us to elucidate the physical 
significance of the method discussed above since for this model, in contrast 
with real alloys, there exists an analytical solution for the partial functions 
Sij on the basis of the Percus-Yevick equation.'T2 The results of our calcula- 
tions show that the concentration independent functions sij and fij bear 
no resemblance to the true partial functions Sij and Iij (this is clear even 
from the fact that the latter are quite significantly dependent on the com- 
position of a mixture). Nevertheless, the total interference functions (or 
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140 V. I. KORSUNSKY AND YU. I. NABERUKHIPJ 

the scattered intensities) which were reconstructed on the basis of the 
functions Ti, and sij are found to be very close to the' true ones in the wide 
region of compositions. It follows from this that the possibility of reconstruc- 
tion of the experimental functions I(k) does not provide a useful criterion 
of the correctness of the Halder-Wagner procedure. Therefore one cannot 
ascribe any direct physical significance to the functions iij(k) which were 
obtained in the various works cited above. 

2 RESULTS OF THE CALCULATIONS 

Since all the authors used the experimental data on X-ray scattering to 
obtain the concentration independent partial interference functions fi,(k) 
we shall also simulate this case. The partial structure factors S,j(k) were 
calculated with the help of the formulae of the article' (after correction of 
numerous misprints). For the calculation of intensities and interference 
functions one must choose the atomic scattering amplitudes of the com- 
ponents. This point is not of great importance for our problem. Therefore, 
more or less arbitrarily, we choose the atomic scattering factors of the 
atoms Cu and In as f l  and f2, respectively.'* The structure factors of these 
liquid metals are well described by the hard sphere model with apacking 
density 71 = 0.45.1',19.20 Then it is possible to obtain diameters of the spheres 
u frgm the formula q =,( d 6 )  p o 3  ( p is the numberdensity), viz. (J, = uCu = 
2.2 A, 0 2  = uln = 2.86 A and a = u1 /u2  = 0.77. The main calculations were 
made with the above parameters of the system of hard spheres. The partial 
and total interference functions were calculated for the values of x2 (the 
fraction of large spheres) 0; 0.15; 0.25; 0.35; 0.50; 0.65; 0.75; and 1.0. The 
three concentration independent functions f l  '(k), I22(k) and fI2(k) were 
obtained by solving the three Equations (4) on the basis of the calculated 
curves I(k) for x2 = 0.15; 0.35; 0.65. 

From Figure 1 it is seen that the true partial interference functions 
Ii,(i) depend considerably on concentration. Tl$s concerns particul%rly 
Ill(k) the first peak of which moves from 3.1 A-' at x2 = 0 to 2.7 A- '  
at x2 = 0.75, the height of the peak being diminished by a factor of 1.56. 
Figure 2 shows that the functions i l l (k)  and Ill(k) (x2 = 0.25) are very dif- 
ferent: although the first peak positions are displaced only by 0.1 A-'  the 
values of the functions at the maximum differ by a factor of 1.5. The firs1 
peak of 122(k) is considerably narrower and is displaced by 0.2 A-1 relative 
to the first peak of 122(k). Furthermore, the functions fll(k) and fzz(k) haw 
additional oscillations on the left and right side, respectively, of the mair 
peak which are absent in the curves of the true II (k) and 122(k). In the smal 
k region the functions I l l  (k) and Iz2(k) coincide practically with the inter 
ference functions of the corresponding pure components, but differ con 
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MEANING OF THE CONCENTRATION 14 I 

siderably from the partial functions in solutions which strongly deviate from 
zero in this region (Figures 1 and 2). 

It is interesting to note that the concentration independent I,,(k) and 
f22(k) resemble in general the interference functions of the pure com- 
ponents rather than the true Iij(k) in the alloys (Figure 2). Such a resern- 
blance was observed practically in all the works where the functions fij(k) 
were obtained from the experimental data. It was even shown by Waseda 
and c ~ w o r k e r s ~ ~ - ~ ~  that for some alloys (Hg-TI, Hg-In, K-Na, Mg-AI) 
it is quite possible to accept the interference functions of the pure corn- 
ponents as fll(k) and f22(k) and to obtain I12(k) in each alloy from the 
only one Equation (4). The f12(k) thereby obtained did not differ practically 
from that which was found by solving the three Equations (4) for three 
alloys. To all appearances, the close resemblance of fl,(k) and 12,(k)with 
I(k)’s of the pure components is a general property of the procedure which 
assumes the partial functions to be independent of concentration. 

Thus, the concentration independent partial functions fG(k) are very 
different from the true functions Iij(k) for the model system of hard spheres. 
Nevertheless, these functions iij(k) allow one to reconstruct with good 
accuracy the true total I(k), at concentrations differing from those which 
were used for the calculations of fij(k). Figure 3 demonstrates this fact. 
The maximum differences are observed in the region of the main peak: 
2.1% at k = 2.8 A-j (x2 = 0.25); 3% at k = 2.8 A-l (x2 = 0.5); 3.4% at k = 2.5 
A-1 (x2 = 0.75). At larger k the true curve differs from thereconstruction 
not more than by one per cent. Therefore, the calculation of the model 
system reproduces the main result of the worksg-17 in which the total inter- 
ference functions reconstructed on the basis of fb(k) did not differ from 
the experimental ones within the errors of the experiment (some per cents)t. 
Since the functions‘ fij(k) are not the true partial functions in the model 
system, the same statement is valid with great probability concerning the 
concentration independent functions I,( k) which were obtained for the real 
alloys. 7-17 

Moreover, the procedure of obtaining the functions fij(k) has in itself 
essential defect. Since it is necessary to achieve only approximate re- 
construction of the total I(k)’s one can find a wide variety of the functions 
fij which ensure an acceptable result within an accuracy of 3-5 per cents 
determined by the errors of diffraction experiment. In other words, there 
is a basic uncertainty in the choice of the functions fij(k). In order to prove 
this statement we calculated the functions fij(k) from the various set of 

tlt will be noted that the reconstruction is not able to give good results if x2 -+ 0 or 
x2 --t 1 .  The true total functions I(k) approach under these conditions the interference 
functions of pure components, Ii, while the reconstructed functions I&) approach lij(k), 
l i  and fii being considerably different (Figure 2). 
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V. I. KORSUNSKY AND W. I. NABERLJKHIN 

FIGURE 1 True partial interference functions Iij(k) for the binary mixture of hard 
spheres. a = 0.77; 'I = 0.45; at = 2.86 A 1 - x2 = 0; 2'  - x2 = 0.25; 3 - x2 = 0.50; 4 - x2 = 
0.75; 5 - ~2 = 1.0. 
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FIGURE 2 Comparison of IG with fij and Ii .  
- The concentration independent partial interference functions Iij . 
- - - - The true partial functions Iij (x2 = 0.25). 
- .- .- The interference functions of pure components Ii. 
a = 0.77; a2 = 2.86 A. 
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144 V. 1. KORSUNSKY AND W. I. NABERUKHIN 

FIGURE 3 Reconstruction of the total interference functions I(k) as a weighted sum of 
the concentration independent functions Iij(k). The true functions I(k) are displayed by the 
solid lines and reconstruction -by the pomts. lij are calculated by means of Equation (4) 
from I(k) at concentrations x2 = 0.15; 0.35; 0.65. 

three true curves I(k). For greater clarity of the results, we decrease in this 
calculation the parameter a taking it equal to 0.5 which corresponds to the 
diameter of large spheres a2 = 4.4 A. 

Figure 4 shows that the functions fi,(k) depend essentially on concentra- 
tions which were chosen for their calculation. Two variants of the functions 
i l l (k)  and Il2(k) distinguish the most strongly: their oscillations in the k 
interval from 2 to 4 A-'  are quite different. Of course, as in the calculations 
with a = 0.77, two variants of the functions fij(k) are very different from 
the true partial functions Iij(k). Nevertheless, these two sets of fij(k) des- 
cribe quite well the true interference functions I(k) at concentrations dif- 
fering from those utilized in the calculation of f,j(k). It is evident from 
Figure 5 that only at x2 = 0.15 is the reconstruction bad. At other con- 
centrations, the error is several per cent. These results demonstrate an un- 
expected feature of the procedure of obtaining lij(k): a good description (i.e. 
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FIGURE 4 Comparison of the true and concentration independent partial functions. 

- .- The true lij(k). 
- The concentration independent functions Iij(k) calculated from I(k) at x2 = 0.15; 0.35; 
0.65. 
---The same, but calculated from I(k) at x2 = 0.25; 0.5; 0.75. 

a = 0.5; 7 = 45; 02 = 4.4 A. 
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V. I. KORSUNSKY AND W. I. NABERUKHIN 

O O  i 2 4 5 f 

K fA-7 
FIGURE 5 Reconstruction of the total interference functions I(k) on the basis of the COJ 
centration independent functions I,j(k). The solid line represents the true functions I(k 
the points give the reconstruction. 
a = 0.5; 9 = 0.45; u2 = 4.4 A. The curves 1,3,5 are reconstructed on the basis of the functioi 
li (k) calculated from I(k) at x2 = 0.25; 0.5; 0.75; the curves 2, 4, 6 -on the basis of I,( 
ohained at x 2  = 0.15; 0.35; 0.65. 

in the limits of the accuracy of diffraction experiment) of the intensity 
scattering gives a rather wide class of the three concentration independe 
functions l1 I (k), 122(k), Ilz(k), and not a unique set of these function, as w 
implied originally when developing the procedure. 
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FIGURE 6 Partial structure factors Sij(k) for a binary mixture of hard spheres. 
a = 0.77; 7 = 0.45; 02 = 2.86 R. 
-The concentration independent Sij(k). 
- . - The true Sij(k). 
- - - The structure factors of pure components Si(k). 
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148 V. I. KORSUNSKY AND YU. I. NABERUKHIK 

Halder and Wagner’ supposed that the success of their procedure was 
based on the weak dependence of the true partial interference functions 
Iij(k) on composition of alloy, in contrast to the functions Sij(k) which, as 
it is well known, vary considerably with concentration. ‘ v 2  However, this 
point of view proved to be incorrect. By analogy with the method described 
above it is possible to determine theconcentration independentpartial struc- 
ture factors Sij(k) with the help of Equation (1). Figure6shows suchfunctions 
calculated at x2 = 0.15; 0.35; 0.65. They differ from the true partial functions 
even more than ijj(k)t. Nevertheless, the functions Sij(k) thereby obtained 
permit a good reconstruction of I(k) at other concentrations(x2 = 0.25;0.5; 
0.75). This result confirms once again that the success of any reconstruction 
of the total interference functions I(k) on the basis of Tij(k) in the real 
systems7-’’ is hardly connected with the true concentration independence 
of the partial interference functions. 

3 CONCLUSIONS 

The extensive experimental data7-17 and our calculations for the model 
system of hard spheres show that for every binary solution it is always pos- 
sible to find (moreover, in a variety of ways) three concentration in- 
dependent functions fij(k) which allow one to reconstruct the total 
interference functions over a wide region of compositions with good ac- 
curacy. However this fact does not reveal any physical content in the 
functions fij( k) thus obtained, and reflects only mathematical properties of 
the equation sets (1) and (4) which allow a considerable freedom for the 
choice of fi,(k) for a given accuracy of reconstruction. The calculations 
performed here show that the functions Tij( k) differ considerably from the 
true partial interference functions which are, in principle, concentration 
dependent. 

It is possible, of course, that specific systems or even a class of systems 
may exist in which the partial functions would depend only slightly on con- 
centration in some interval of compositions. But the ability of the three 
concentration independent functions ljj(k) to describe the observed intensity 
of scattering cannot be a criterion for such a situation. One needs here the 
more constructive arguments. Since the procedure of obtaining the func- 
tions fij(k) was carried out for all investigated systems7-’” in apurely formal 
way, it is highly probable that the functions fij(k) obtained in these works 
have no direct physical significance. 

tlt is of interest that s ,z (k)  becomes practically equal to zero if k --. 0 (Figure 6). Sincc 
S 12(0) = ,( < N ,  N, > - < N I > < N2 > )/( < N ,  > < N, > ) I ”  (see, for example Ashcroft anc 
Langreth’ this fact means that the requirement of the concentration independence of S,,(k‘ 
automatically demands the fluctuations of the number of particles of different kind to be un. 
correlated in solution. 
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